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Abstract —The microplane model is a powerful approach for the representation of the complex
triaxial behavior of concrete and other similar materials. However, most offorts in previous for-
mulations were devoted to the development of the model itsell and to the expenimental data
fitting, rather than to a comprehensive theoretical deseription or to attatnment of & modular and
computationally efficient implementation in a computer code. In this paper. these objectives are
pursued. The formulation of the model has been maodified to rationalize the structure of the basic
hypotheses, simplify the equations and generalize the concepts whenever possible. The result is a
new formulation which, while retaining the Lavorable properties achieved previously, is also casier
Lo understand, and convenient for computer implementation and large-scale calealations. A com-
putational scheme is presented with the unified structure of a general code serving the double
purpose of test specimen analysis and finite clement analysis. In practice, this structure includes two
different main programs which cull the same set of constitutive subroutines, A salient feature ot the
new version of the model is that the computation of the stress corresponding to a preseribed strain

practical use of constitutive madels, can be avoided. Consequently, the complexity of the code and
the cost of computations can be dramatically reduced. Some examples of applications, used to verily
the previous version of the model, are also presented. They demonstrate that this new formulation
gives a much better numerical etficiency for code impleaentation while keeping the sime desirable
features and accuracy in experimental data fitting,

L. INTRODUCTION

In 1938, G. I. Taylor suggested a new class of material models for plastic polycrystalline
metals in which the constitutive material properties are characterized by relations between
the stress and strain components on plancs of virious oricntations in the material (now
called the microplancs). which are constrained either statically or kinematically to the
mucro-stress or mucro-strain, Based on the static constraint, this basic idea has been
extensively developed for metals under the name of slip theory, beginning with the pion-
eering work of Batdort and Budiuanski (1949). Later, the models with static constraint have
been adapted for geomaterials (Zienkiewicz and Pande, 1977 ; Pande and Sharma, 1983).
In application to concrete and geomaterials, the name “slip theory™ became misleading
because most of the inclastic response is due to damage such as microcracking, and the
more general term “microplane model” was coined (BaZzant and Oh, 1983 BuZant, 1984).
It was also recognized that the strain-softening observed in geomaterials cannot be rep-
resented with a static constraint becausce the microplane system becomes unstable, and
consequently a kinematic constraint has been adopted (Bazant and Oh, 1983, 1985 ; Bazant,
1984 : Bazant and Gambarova, 1984: Bazant and Prat, 1988), although a more general
mixed constraint might conceivably also be used.

The microplane model with kinematic constraint and strain-softening has proved to
be a powerful approach for modelling rather complex aspects of triaxial behavior of
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brittle-plastic materials such as concrete, rock, ceramics and some composites (Bazant and
Gambarova, 1984 Bazant and Oh, 1985; Bazant and Prat, 1988: Bazant and Ozbolt,
1990). However, as usual in the exploration of new constitutive models, most attention has
so far been paid to achieving an accurate representation of the main aspects of material
behavior given by experimental curves rather than to other theoretical or numerical aspects
also important for constitutive modelling.

Further work has lead to the conclusion that the theoretical description of the model
given in previous works can be simplified. the same concepts can be presented in a more
comprehensive way, and a new and clearer interpretation of some of the equations and
variables involved in the formulation is possible. Also, some derivations can be given a
more rigorous or alternative description, and some changes can be made in the hypotheses
and assumptions, so that the final formulation is better suited for practical application.

From the viewpoint of numerical implementation and code development. the previous
formulations of the microplane model also lacked a systematic approach. In general. the
computer implementation of a constitutive model is undertaken with one of the following
two purposes: (i) representation of the material behavior itself, as a relationship between
stress and strain (“single-point constitutive verification™). or (i1) representation of the
material behavior in the context of structural analysis ("F.E. analysis™). Without a unified
scheme of implementation, the programs developed for these two purposes may well have
completely different structures, and the part of the code corresponding to the constitutive
model may feature two completely different implementations of the same model, which in
a way was the case for the previous versions of the microplane model.

In this paper both aspects, a new theoretical description (Scction 2) and a new numerical
implementation scheme (Section 3) for the microplane model, are presented. Altogether,
these aspects yield a new version of the model which, while keeping all the usceful features
achicved in the previous version in terms of coastitutive verification, is also casier to
understand and better suited for practical use in the context of a general F.E. code. The
new computer scheme includes two model-independent main programs calling the same
material subroutine which gives access to all the model-specttic routines and computations.
In this way, all the inconveniences caused by having two different programs implementing
the same modcl are overcome automatically : the code needs to be written only once, and
once verified at the constitutive level it is automatically working for F.E. computations.
Morcover, any further modifications introduced to the model need to be encoded only once.
Thus, both the single-point and F.E. analysis programs always contain the same version of
the model, and the results obtained from both levels of analysis are fully consistent for
comparison or complementary use in the same practical problem. By virtue of the general
scheme used and the new theoretical assumptions for the model, the computations in these
subroutines (which basically must perform a load-step computation from prescribed strain)
are fully explicit, without any step-by-step integration procedure. This makes the code
simple to implement and fast to run.

Section 4 presents some examples. The results obtained are compared with experimental
data and published results of the previous version of the microplane model. The comparison
is made in terms of capability to fit experimental data as well as numerical efficiency. Finally,
Section § gives a brief summary and the main conclusions drawn from this work.

2. THEORETICAL DESCRIPTION OF THE EXPLICIT MICROPLANE MODEL

At a point within the material, a microplane is defined as an arbitrary planc which cuts
through the material at that point, defined by the orientation of its normal unit vector of
components n,. The most direct and easiest physical interpretation of a microplane comes
from the observation of the material microstructure, as the interface or discontinuity plane
between grains or different components in the heterogeneous medium (Bazant and Gambarova,
1984 ; Bazant and Oh, 1985 ; Bazant and Prat, 1988).

On a generic microplane, certain components of strains and stresses are considered.
These are the normal and shear strains and stresses on that planc. A sct of stress—strain
laws are defined as the relations between strains and stresses on the microplane. These laws,
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together with the relations between macroscopic and microplane stresses and macroscopic
and microplane strains, constitute the material model.

2.1. Kinematically constrained microplane system

In the first models of this type developed for metals and soils. a static constraint (the
microplane stresses are equal to the resolved components of the stress tensor on that plane)
was assumed as the fundamental micro-macro relationship. However. to represent the
behavior of quasibrittle materials such as concrete or rock. showing strain softening. a
kinematic constraint (the microplane strains are equal to the resolved components of the
strain tensor on the plane) seems to be necessary. As will be shown in Section 3. this
assumption fits very well into the strain-to-stress scheme used for numerical calculations
and makes possible fully explicit types of calculations with great economy in computer
time.

The theoretical framework for the new explicit microplane model is based on the three
hypotheses given below, similar to those used by Bazant and Prat (1988). with some changes
that affect the resulting formulation and its numerical implementation:

Hypothesis 1. The normal and shear (tangential) strains ey and &; on a microplane of
unit normal #, are the resolved components of the macroscopic strain tensor g, in that
direction. which implies that

£ = £, NN, ()
Bp = &, 0 — N0, = (0, — 11 )E,. (2)

Additionally, the normal strain is split in two parts, the volumetric strain ¢, and the (normal)
deviatoric strain ¢, the expressions ol which are

by = /3 3
£ = En — Ly )]

The latin lowercase subscripts refer to Cartesian coordinates x,(/ = 1, 2, 3), and subscript
repetition implies summation.

Note that the tangential strain is a vector with three components in space, but its
direction always lics in the microplane of normal n; [(check that £pn, = 0, from eqn (2)].
Also the normal strains are vectors with three Cartesian components in the normal direction
n,, though only their magnitudes ey, &y and g, are used. A useful alternative interpretation
of the variables &y, &, and £, _can be obtained if they are derived in terms of the volumetric
ev and deviatoric ¢,; = &, —&yd,; parts of the macroscopic strain instead of directly from the
tensor &,,. Then, the volumetrice strain at microplane level &y, which is the same for all the
microplanes, is directly equal to the macroscopic volumetric strain. The normal deviatoric
strain g, and the tangential strain &, . which are ditferent for each microplane, are equal to
the normal and tangential components of the projection of the deviatoric strain tensor, ¢,
on the microplanc considered.

Hypothesis 1. Associated with the three strains &y, &, and &, the three corresponding
stresscs ay, gy, and gy arc introduced so that their respective products give directly the
work done on the microplane. The strain-stress laws at this level are a set of empirical
relationships dcfining the cvolution of cach one of those three stresses as a function of the
three microplanc strains (and possibly their history) cxclusively.

The fact that the laws for ay. o, and o, are functions of strains exclusively is a very
important difference with the previous version of the model (Bazant and Prat, 1988). This
hypothesis permits the model to be fully kinematically constrained. Consequently, other
kinds of dependences. such as the dependence of ;_on a certain invariant of the macroscopic
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stress tensor assumed in previous works (which in fact established a “"mixed™ kinematic-
static constraint for the model) are in this case excluded from the formulation.

Hypothesis I1l. The relationship between the microplane stresses gy. g and o1 and
the macroscopic stress tensor ¢,; is obtained by applying the principle of virtual work. Its
application to this case is explained in some detail in Appendix A. including certain
considerations about symmetry requirements for the tensors ¢,; and ¢;, necessary to ensure
interchangeability of the indices i and j in the final expressions (the symmetry considerations
used in the Appendix are an alternative to the a priori symmetrization of eqn (2) used in
previous works to reach the same final effect). The expression for the macroscopic stress is
then :

3 3 { o, .
g, = 0oy0, + ﬁj apnin; dQ+ i:rj T(n,<),,+n,o,,—-Zn,n/n,)dQ (5)
- 0 Q <«

where the integral domain represented by Q represents the upper half hemisphere and J;,
is the Kronecker delta.

An important new feature of eqn (5) is that it is written in terms of the total values of
stresses instead of differential increments. The equation would also be valid if all the stress
variables were replaced by their differential increments, which was how it was presented in
the original formulation (Bazant and Prat, 1988). If. however, the equation is written in
terms of the total values, then the current (total) value of the macroscopic stress tensor o,
can be obtained from the current (total) values of the microplane stresses ay, ap, and o at
any moment during the load history, by direct application of egn 5. This desirable feature
cannot be obtained from the incremental-type equation,

Another advantageous aspect of eqn (5) is that is permits a clear interpretation of the
contribution of cach of the microplanc stresses (ay., o, and ;) to the macroscopic stress
tensor a,,. From that equation, onc can sce that the gy term gives a volumetric contribution
o a,,. and the a term gives a pure deviatoric contribution to the macroscopic stress tensor
(this becomes clear by noting that this term becomes zero if § = f). The gy, term is the only
one which gives both volumetric and deviatoric contributions to the macroscopic stress
tensor. Consequently, this term is responsible for the intrinsic coupling the model shows
between volumetric and deviatoric behavior, such as deviatoric-induced dilatancy, etc.

With the three hypotheses presented, and provided that specific definition of the
microplanc stress—strain relationships is given according to Hypothesis I, the basic frame-
work of the model is complete and it is already possible to calculate the macroscopic stresses
which correspond to a prescribed value of macroscopic strains [sce the scheme in Fig. (1)]:
from the macroscopic strain increment, the microplane strain increments are evaluated by
using eqns (1)~(4) then the microplane stresses are computed using the stress-strain laws
defined at the microlevel, and finally the new macroscopic stress tensor is obtained by
integration of microplane stresses according to egn (5).

MACROSCOPIC MICROPLANE
LEVEL LEVEL
STRAIN Eij Kinematic E €. €

(INPUT DATA) constraint - vieo ST
Microplane

laws

g, __ Principle of
STRESS (ouw{n T Virtual Work 0v,0,,0+
RESULT) l

Fig. 1. Basic scheme for the computation of macroscopic stresses from the macroscopic strains.
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Although not always necessary, in certain situations (e.g. as a part of a F.E. program).
it is useful to calculate additionally the macroscopic tangential stiffness tensor D, ;. relating
macroscopic stress and strain increments. In particular, this tensor is required to obtain the
tangential stiffness matrix of the structure whose eigenvalues decide path bifurcations and
determine the stable paths (Bazant. 1988 ; de Borst. 1987). The expressions for D, ;; can be
easily derived from the incremental counterpart of eqn (5) by substituting for the microplane
stresses their expressions in terms of microplane strains and then. for the microplane strains
their expressions in terms of the macroscopic strains. However, since the resulting stiffness
expression can be different depending on the type of stress-strain laws used at microplane
level, this derivation will be given in Section 2.4, after the definition of the microplane laws.

2.2. Constitutive relationships used at the microplane level

Within the basic framework presented. a very wide range of models can still be defined
depending on how the microplane stress-strain relationships are chosen. In this work. the
laws for ov, oy, and oy have been selected on the basis of those used in previous versions
of the microplane model (Bazant and Prat, 1988) but with some modifications and new
dependencies 5o as to make numerical implementation more convenient,

(a) Volumerric law. This microplane law directly reproduces the mucroscopic behavior
of the material when only volumetric strains or stresses are present. Therefore, a curve that
fits experimental data for hydrostatic tests may be directly introduced. For compression
(ay > 0) the following law is assumed :

. \-r Y
ay = I:'?::v[(l + lf‘f‘) + (Ef'v-‘)] (6)
a b

while for hydrostatic tension (oy < 0)

oy = Eyeye b (N

where £Y, «, b, p. 4. a,, p, arc empirical material constants obtained by fitting a single
experimental curve. The volumetric law is plotted in Fig. 2a. For unloading-reloading, both
the tensife and compressive curves act as envelopes. In compression the unloading branches
are assumed to always have the initial slope EV, and the origin of the tensile part of the
diagram always shifts to the point in which the unloading compressive branch reaches the
horizontal axis. The unloading-reloading in tension is assumed to follow a secant slope
between the maximum point reached in the tensile curve and the origin of that curve.

(b) Normal deviatoric law. This law is based on the same type of exponential stress-
strain envelope curve used for the tensile part of the volumetric behavior, but now con-
sidering two different scts of parameters for tension and compression

op = Epepe Ml if g, <0 (8)
6p = Eggucﬂiﬂnliu:)’: if Gy = 0 (9

where £}, a,. p,. az. p, are empirical material constants. The faw is represented in Fig, 2b.
For unloading-reloading, straight lines are assumed with a certain slope. For compressive
behavior the initial slope EJ is always used, while a secant slope (from the origin to the
point of maximum positive strain previously reached) is used on the tensile side of the
diagram. For unloading in compression, the origin of the tensile part of the diagram is
always assumed to shift to the point in which the unloading compressive branch intersects
the horizontal axis.

BAR 27:7-R
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¢) Tangential stress -strain moduli relationship

Frg. 2. Stress strain faws at the microplane level.

(¢) Tungential (shear) law. This is the most complicated among the three microplane
constitutive laws. The complexity comes from two facts: first, the tangential stress and
strain have two in-plane components cach on the microplane and. therefore, the stress -
strain law must be two-dimensional, that is, it must provide a coupled relation between two
components of stress and two components of striin simultancously. Second, in this law
there must also be an additional dependence on a macroscopic variable giving a measure
of the external conlining pressure such that the tangential response is stiffer when the
confinement is lugher. This is to reflect in some way the phenomenon of internal friction,
which must be taken into account if’ the model is expected to fit, with the same set of
material parameters, the experimental data for diflerent confinement pressures.

Several possibilitics can be considered to formulate such a model in a consistent way.
Onc of them might be to adopt & general two-dimensional plastic model similar to the ones
alrcady existing for the behavior of joints or interfaces (Gens et al., 1989). However,
although this kind of model would be fully consistent and satisfy all the requirements
mentioned, the complexity and computational demand of such a model running at the same
time on every one of the microplanes used for the numerical integration over the hemisphere
would sertously reduce numerical efficiency.

Among other alternatives considered. the basic scheme proposed by Bazant and Prat
(1988) scems to remain the best compromise between performance and cost, though some
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important improvements concerning the influence of the macroscopic confinement may be
introduced. Basically. this approach. which we call “"parallel tangential hypothesis™, consists
of the simplifying assumption that the tangential stress vector on a microplane, o, remains
always parallel to the corresponding tangential strain vector. &y . This means that

or =T (10)

7

where 1= o7 and ;= \/‘?::;r’. Then the problem reduces to establishing a one-
dimensional relation between the tangential stress and strain moduli t and ;. The relation-
ship we use for that purpose is an exponential curve similar to that used for the other
microplane laws:

= Ejye e (m

in which EY and p. are empirical material constants and «; is a certain empirical function.

As shown in Fig. 2¢, the curve given by this equation is used as an envelope, with
unloading-reloading branches with initial stiffness £7. Zero tangential stress is assumed
when the horizontal axis is reached during unloading. For reloading, the full initial stiffness
applies again up to the current envelope. In this way, a very simple loop is obtained at
this level, which seems to be suflicient for obtaining a reasonable simplified approach to
unloading-reloading loops at macroscopic level, as shown in one of the examples of
application later in this paper.

As deseribed so far, however, the tangential stress striin relation would not show any
dependence on the macroscopic confinement. This dependence is introduced through the
parameter ¢, in egn (1), which is assumed to have increasing values depending on the
macroscopic confinement. In this work we take the variable &y as the measure of the ex-
ternal confinement instead ol g = (g +a,,)/2 which was used in the original formulittion
(Bazant and Prat, 1988). This assumption has the advantage that it makes the model fully
kinematically constrained. A lincar variation is assumed for the dependence of @y on &y
(FFig. 3):

ay = at+k,iy (12)

where «f and &, are empirical material constants,

The fact that ¢, depends on ¢y introduces the necessity of some additional assumptions
on how Lo compute the stress t from the strain ¢ in Fig. 2¢. In this work, the following
procedure is used : first, the increment of t is computed clastically from the increment of 3
on the basis of the initial modulus £7. Then the curve given by egn (11) with a valuc of
corresponding to the final value of &y is used as a limit envelope for t. As described, this
procedure is based only on the total values of the variables at the end of the load step, not
involving, therefore, uny numerical integration procedure with sub-stepping. This feature
is un apparently minor but practically important modification of the previous version of

o)

ko7

/03

Fig. 3. Dependency of ¢, on &y
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the model (in which the numerical integration procedure was needed) : it makes possible a
fully explicit computation of a strain-prescribed load step. which is one of the objectives of
this work.

2.3, Path-dependence

As is clear from eqns (6)-(12). the microplane stress-strain refations are total-strain
relations which are path-independent for the case of monotonic loading on the microplane.
It is important to note. however. that the macroscopic response for macroscopically mono-
tonic loading is path-dependent. The reason is that even such loading normally involves
unloading (for volumetric or deviatoric curves) or change of direction (for shear) on some
microplanes. As in the previous microplane model. it is assumed that all the macroscopic
path-dependence stems from the possibility of various combinations of loading and unload-
ing on the microplanes.

This is an attractive simplifving theoretical feature of the model. In practice. however,
some numerical precautions must be taken due to the numerical scheme used. explained in
Section 3. According to the kinematic micro-macro constraint assumed. the change of
direction of the microplane strains must come from a change in direction of the macroscopic
strains. As will be shown in Section 3, the increments of strains, stresses and other variables
are calculated for each load step within a loop over the number of external load steps. In
the (macroscopic) strain space, the strain increment corresponding to a load step is rep-
resented by a straight scgment. and the segments of the subsequent load steps constitute a
polygonal approximation to the true strain path. In general. the true strain path will be a
curve not necessarily smooth (e.g. consider the sudden development of lateral dilatancy in
a uniaxial test near the peak, as in the first example presented in Section 4). Consequently,
it is clear that in practice the load history must be divided into a sufficient number of {oad
steps so that the true strain path and, therefore, the corresponding loading unloading
combinations in the microplanes, can be captured in the calculations,

2.4, Tungent macroscopic stiffness tensor
For the derivation ol the macroscopic tangent stiffness matrix, eqn (3) must be rewritten
in terms of the difterential stress increments instead of the total values:

do

lr - .
( -y (g, +n,0,,—2n,n,n.) ). (13)
1 -

. 3 3
da,, = dayd,, + R dopnn, dQ + 3
T o T
Then the increments of stresses at the microplane level must be replaced by their incremental
expressions in terms of the current tangent modulus and the increments of strain at that
fevel. These are simple scalar expressions for doy and da,,,

doy = EV"dey (4
da, = £53"dey, (15)

but not for da, since both the tangential stress and strain on a microplane are vectors.
Their incremental relationship must involve a matrix

dor = H3 " dey . (16)

The matrix H;" for the parallel tangential model used in this work is derived in
Appendix B. Its final expression involving the tangential shear stiffness £ (obtained from
the relationship dr = E7"dy) as well as the current values of oy . & and their respective
moduli t and 7, is
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Er &
’) badiy a7

- ar=
’

i

Lm_r‘ tan
Hrt —:;()r\‘+ Er -
7

Introducing eqns (14)-(16) into eqn (13) and then replacing the microplane strain
increments according to eqns (2)-(4). the final expression of the tangent macroscopic
stiffness matrix D3}, can be obtained. This derivation is presented in Appendix C and it
requires the introduction of certain symmetry considerations for identifying the matrix
coefficients from the resulting equation (or alternatively, the use of an a priori symmetrized
version of eqn (2). as done in previous works) in order to get a stiffness expression that
satisfies the interchangeability of stress tensor indices i and j and the strain tensor indices
k and /. The final expression is:

do,, = Df?i-‘/ dey (18)
where

=Lin

3
T V s s e ta S
:/‘2I = “i“ ():[b/\m + ;;;E l)m"l"y("knm - ()km) dQ
- Q

3

J mye o .
5 J‘ e (1,8, 1,0, =20, ) (S + ndy — 2menn ) Q. (19)
- 2

4

Note that this is not the same expression as obtained by Bazant and Prat (1988), where
the relationship between macroscopic strain and stress increments was do,, = C, 4 diyy +da)
with the additional initial stress term s the tensor Cjy, did not have the meaning of tangeatial
stitfness,

2.5. Summary of the model parameters and their values

Prior to establishing the final list of model parameters, it is useful to relate the three
initial moduli of the microplance stress strain laws Ey, E) and EY, which do not have any
macroscopic physical meaning, to the standard elastic parameters. This can be casily
achieved 1f we impose the condition that virgin concrete initially follows a lincar clastic
behavior. In that situation the behavior on any microplane is the same: linear elastic
functions for ay, g, and o, in terms of their respective strains with initial moduli EV, £f
and E7. These equations can be introduced into the integral in egn (5), the microplane
strains replaced according to eqns (2)-(4), and the integral over the hemisphere solved by
hand, from which a final lincur relationship between mucroscopic stress and strain is
obtained. By identifying the coeflicients of that expression with the coeflicients of Lamé’s
cquation of elasticity, the following refations are obtained (BaZant and Prat, 1988):

E

o T

Ev=125 0

ES =noEV 1)
o 1[50 =2y

Thus. Young's modulus. E, Poisson’s ratio, v, and the additional parameter, n,. can be
uscd as input parameters instead of the three initial moduli at microplane level. Then the
program calculates the values of those moduli internally.

The final list includes a total of 14 parameters:

(i)—Elastic paramcters: £, v and #,.
(i)—Volumetric law: a. b, p, ¢, a, and p,.
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(i)—Normal deviatoric law: a, and p..
(iv)—Tangential law: a%. A, and p..

However. the six volumetric law parameters can be identified sepuarately by simple curve
fitting of the compressive and tensile hydrostatic stress-strain curves. Of these six
parameters. five can be usually assumed to have the same values for most concretes:
a=0.005.bp=0225p=0.25¢4=225p = 0.5 Constunts £and vare known from elastic
tests. Thus. only seven parameters need to be identified by fitting other than hydrostatic test
data on the basis of eqn (6). Furthermore. experience shows that for most concretes. one
can use p. = p, = 1.5, Consequently. there are only five parameters. n,. «,. ¢.. a% and k.
which must be determined to fit the experimental data for non-linear triaxial behavior
curves. Morcover. in the case of tests with negligible contining pressure, &, = 0 can be used
and the number of parameters is reduced to only four. With only five or four unknown
parameters, the fitting of non-lincar triaxial test data is not dithicult.

3. NUMERICAL IMPLEMENTATION

We now present a unified scheme for two computer programs serving the purposes of
both “single-point™ constitutive verification and F.E. structural analysis. This scheme
involves two (constitutive) model-independent main programs and one (constitutive)
model-specific set of subroutines.

3.1 Flowcharts for constitutive verification and F.E. analyvsis

Figure 4a shows the basic flowchart of the “single-point™ main program developed for
constitutive verification, and Fig. 4b the sume scheme for the companion F.E. main
program. Both diagrams present a similar structure, though the F.E. program obviously
includes all the additional operations for caleulating clement stiffness matrices, cte. After
the general data input, a fiest loop over the number of load steps can be observed in both
programs. For the finite clement program, a load step consists, as usual, of a sct of applicd
loads and prescribed nodal displacements, while for the single-point program a load step
consists of u set of values of cither prescribed stress or prescribed strain for cach of the six
degrees of freedom considered at the constitutive level.

In both programs, the non-lincar analysis of cach load step is curried out by using a
standard iterative initial-stress type strategy. This is reflected in the flowcharts with the
inner loop controlled by an IF statement at the bottom of the diagrams. As a consequence
of using the sume non-lincar strategy, the same type of constitutive computations are
required for an iteration in both programs. Those computations are of the prescribed strain
type, i.c. knowing the previous (initial) state and the vitlues of a preseribed strain increment,
the new final state (including the new values of stresses) must be obtained.

Note that the single-point main program of Fig. 4a deals dircctly with the components
of strain and stress at a point of the material. In general, similar results can be obtained
using a finite element program with a single element. However, there may be differences
between the two types of analysis when stress (and not only strain) is prescribed to some
of the degrees of freedom. Then, i unexpected results are to be interpreted. it becomes
difficult to distinguish whether they are due to the constitutive model itself or to spurious
or non-spurious but uncxpected behavior of the finite elements (it ts possible to obtain
apparently correct but misteading results from F.E. computations with onc or few clements,
since the method is expected to converge to the solution of the physical problem studied
only when the mesh is fine enough).

The unified implementation ol the computational schemes for constitutive verification
and for F.E. analysis. has important advantages which in general are clear to the specialists
on large-scale computer programming, but scem to be unappreciated by many solid mech-
anicists who specialize in material modelling. One obvious advantage of the unifted scheme
presented here is that a single subroutine (or set of subroutines) for the constitutive model
needs to be developed tor both levels of analysis. This subroutine (or set of subroutines)
can be debugged and tested with the single-point main program, and then, after this phasc
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[aput material parameters and {apat grometry, matetial patameters,
sumber of load steps NSTEP and aumber of load steps NSTEP
Loop over NSTEP, index (1) (= Loop over NSTEP, iadex (i)
]
Input o™= ot ™ for every d.o.l Laput FP™ or 57 for every d.o.L
Initialise ¢, = g(,_1) 88d gy = Loy Initialize £,y = £,_,) and §, =,y
Loop avet el {NELEM)
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4
Integrate element stiffness £ = [ 8704
Assemble K™ iato global stiffness K
4

4
HTER=0Q WTER=0
= |ITER=IITER+1 (——————————————————a HTER=IITER+1
Solve equations and accumulate ¢ Solve equatioas and accumulate §
S0 = Lo + 072" - g by = &1+ §THE™™ - Ei)
———————— <= Loop ovet elements (NELEM)
= ===—— e LoOp Over Gauss points (NGAUS)

Obrain strain Lo = I: R ﬁ.‘l
i

CALL MATERIAL SUBROUTINES CALL MATERIAL SUBROUTINES

Iaput: e iaitial state (beginaing of step (i)
® prescribed strain increment
A2 g~y

Output: ¢ gew [ Y Q. final state

laput: o initial state (beginaing of step {i))
® prescribed strain increment
ag= ) = fo-1y

Output: @ new ¢, , fAnal state

lategeate £1), = [ 87¢. §7' = [ 700
Assembla E(':l, & into aew global Eup &

YES

] (@) (b)

Fig. 4. (i) Busic flowchart of the -point constitutive verification main program. (b} Basic flowchart
of the F.E. main program.

of the work has been finished, the model is automatically ready as an additional option in
the general FLE. code. There are other advantages: (1) From the viewpoint of the consti-
tutive model, the single-point main program described is general in the sense that any
combination of ¢ither prescribed strain or prescribed stress for every d.o.f. is possible, and
that this combination can vary from load step to loud step. Therefore, any imaginable load
history (with either stress or strain preseribed for every d.o.fl) can be analyzed with this
program. (2) The constitutive subroutines for both (single-point and F.E.) muin programs
can be considered as a “black box™ called only from one point in the program. Therefore,
these programs arc independent of the constitutive model used except for that line, which
enables the same single-point main program to be used with different constitutive models.
This can be easily done by replacing the CALL statement or, alternatively, making all the
statements of CALL to the different models available within an IF structure. The scheme
suggested also makes it casy to implement several constitutive models in the same F.E.
program, as options that can be used alternatively or simultancously in different parts of
the discretization,

3.2. The microplane subroutine

In the context of the unified scheme presented above. the subroutine implementing the
constitutive model itself necessitates that only the following type of computations be
performed : given a certain “initial state™ and a certain strain increment. the resulting final
values of stress and other variables defining the new “final state™ at the end of the increment
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must be computed. A basic description of the steps to follow in this type of computation
has already been given in Section 2.1 and Fig. 1. However, for the implementation in a
practical computer subroutine, some additional numerical procedures need to be estiablished
first.

The first one is the integration over the hemisphere necessury to obtain the macroscopic
stress and stitfness from the stresses and stiffnesses at the microplane level as shown in eqns
(5) and (19). Following Bazant and Prat (1988), this integration is performed numerically,
as a summation of the value of the function to be integrated in a number of selected
“directions™ a, (points on a hemisphere). each with its corresponding weight coefficient. A
rule with a total of 28 integration points (or directions) distributed over the upper hemi-
sphere (Stroud, 1971) has been adopted in this paper. However, a slightly less accurate
formulation (Bazant and Oh, 1985) with 21 points could also be adequate.

The state variables in this version of the model, for both macroscopic and microplane
fevels include:

{i)—The macroscopic strain tensor (g, a total of six variables).

{ii)—Two history variables (maximum and minimum &y achieved so far) for the
volumetric microplane stress-strain law, sume for all the 28 microplanes : a total
of two variables,

(iii)—Two history variables (maximum and minimum &, achieved so far) for the
normal deviatoric microplane stress-strain law, different for each one of the 28
microplanes: a total of 56 variables.

(iv) — One history variable (maximum ;) for the tangential microplane stress -strain
law, ditferent for cach once of the 28 microplances : a total of 28 variables.

This makes a grand total of 92 state variables which must be stored and updated at cach
load step during the computation of the stress history from the strain history at a material
point {for the shightly less accurate integration formula with 21 points, this would decrease
to 71 variables),

The general flowcehart of the computer subroutine implementing the constitutive model
tor strain-to-stress calculations is represented in Fig. 5. One can see that the flowchart has
a simple structure with o single loop over the number of all microplanes considered for the
integration rule, 28 in the present formulation, Then the microplane strains are computed,
and the corresponding faws are used to obtain the new microplane stresses, stiffnesses and
history variables. This is done only once (outside the loop) for the volumetric law, since
the volumetric behavior is the same for all the microplanes, and as many times as the number
of microplanes (inside the loop) for the normal deviatoric and tangential laws. Finally, the
itegration over the hemisphere is performed and the new macroscopic stress and stiflness
values for the end of the Joad step obtained.

The most important feature of the present scheme is that the computation of the
model response under a strain-prescribed load step is fully explicit, i.e. no substepping and
numerical integration is necessary within the loud step for obtaining the new stress and
history variables at the end of the step. Among all the new theoretical and numerical aspects
of this version of the model, there are three that make it possible to achieve this: (i) the
model is fully kinematically constrained, so the increments of microplane strains can be
computed direetly from the preseribed increment of macroscopic strain {including &) ; (i)
the stress strain relationships at the micropluane level are also explicit under any type of
macroscopic loading, so the new values of stresses at the microplane level can be computed
from the microplane strains (even a¢, for non-constant &) ; and (iif) the integral of the
microplanc stress over the hemisphere is expressed in terms of the total values of stresses
and so the new total value of the macroscopic stress tensor can be obtained by integration
of the microplane stresses.

4. EXAMPLES OF APPLICATION

The first example presented in this section corresponds to a uniaxial compression test
carricd out by van Mier (1984), in which both longitudinal and transverse strains were
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Input from the main program calling the subroutine:

- Model parameters
— Initial state including
* -y
o Volumetric, deviatoric and tangential history
variables

— Prescribed Ag

}
VOLUMETRIC COMPUTATIONS

Compute £}, and Acy from gy and Ag

Use the volumetric law:

FROM: [Initial state (¢}, and two volumetric history
variables), and prescribed Acy
OBTAIN: New ov, E}™ and volumetric history variables

1

r Compute new ey = £} + Aev

Loop over microplanes (28)

i
DEVIATORIC COMPUTATIONS

Compute €3, and Acp from g;_,) and Ag
Use the deviatoric law:
FROM: Initial state (¢3, and two deviatoric history

variables), and prescribed Acp
OBTAIN: New ap, EP™ and deviatoric history variables

1
TANGENTIAL COMPUTATIONS

Cowmpute ¢ and Aep, from ¢, _,, and &g
Use the tangential law:
FROM: [nitial state (¢ and tangential history variable),

and prescribed Aer, and ey
OBTAIN: New ar,, HX" and history variable

|
1

tntegration of ov, @p, and o, to obtain new ¢

Integration of EP, ES, and [ to oblain new D**°

Fig. 5. Flowchart of the explicit micropliane model subroutine.

meusured. These measurements include the post-peak softening of the specimens—a ditficult
aspect whose complete description would require a very complex analysis of triaxial strain
localization tn the specimens. The softening may have caused the strain state in these
specimens Lo become non-uniform after the peak load, although no observations to this
effect were documented. Since evidence is lacking, the tests with post-peak softening are
here analyzed under the hypothesis of uniform strain. This hypothesis is applicable only to
sufliciently small specimens whose size is approximately equal to the characteristic length
of the material used in non-local formulations (BuZant and Ozbolt, 1990). If the strain
localized. the post-peuk stress -strain curve of the material would decline less steeply than
shown in Fig. 2 (and would yicld a higher value of encrgy dissipation, which meuns the
present analysis is on the safe side with respect to energy dissipation). The present model
could then be adjusted to describe it correctly. It should further be noted, though. that even
if the strain in these specimens was localized, the average stress—strain relation obtained
can still be used for an approximation of finite elements of nearly the same size as the
specimens tested [this is exactly true it the structural action can be approximated by the
series coupling model: see Bazant and Cedolin (1991), Chapter 13]. Analysis of strain
localization in the specimens tested is beyond the feasible scope of this paper.
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Fig. 6. Comparison with uniaxial test by van Micer (1984).

Comparisons of the present modet (solid curves) with van Mier's measurements (data
points) are shown in Figs 6a and 6b, the fiest including the axial stress strain curve and
axial stress lateral strain curve, and the second the axial stress volumetric strain curve. In
these diagrams, the results obtained with the new explicit microplane model are represented
by the solid lines, while the dashed lines are the results obtained with the previous version
of the microplane model already published by Bazant and Prat (1988). The circles denote
experimental data. The prescribed strain on the loading axis was applied in 13 increments
ol 0.0005 for the first 10 increments and 0.0010 for the remaining live. The parameter vadues
used in this case are [ =2406 MPa, v = 0.18, 5, =085, «, = 0.0004, a,=0.0043,
af = 0.0018, k, = 0. The remaining parameters have their general values already specified.

Since &, = 0, the parameter ¢, is assumed to be constant as it was in Bazant and Prat
(1988). In this particular situation both versions ot the model are equivalent from a
theorcetical point of view. The values of the remaining purameters in this example are also
the same, which explains why the curves shown in the figure are almost coincident.

However, there is one large difference: the amount of computer time spent on cal-
culations in both cases. In the old microplane model. a step by step numerical integration
was performed within each load step. which in general is a very expensive procedure, while
in the new explicit formulation, the same final values are directly obtained by means of a
set of explicit expressions previously integrated by hand.

In order to make a comparison between the computer time spent with each version of
the model under similar conditions, a new implementation of the old version of the micro-
planc model has also been made. The original subroutine has been modified so that it
performs the type of strain-to-stress constitutive calculations nceded to be used in con-
junction with the same “single-point’™ main program as the new explicit formulation. Then
both models can be used to solve the same example under almost identical conditions and
an objective evaluation of the true savings obtained with the new formulation can be made.

For any step-by-step integration procedure, the subroutine implementing the old ver-
sion of the model includes a parameter that gives the measure of "how finc™ the substepping
within the prescribed load step will be. In that subroutine, a parameter called EPSINC is
uscd for that purpose: any strain-prescribed load step to be computed by the subroutine is
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divided in a number of proportional substeps so that the largest component of the strain
tensor in one substep would not be larger than EPSINC. If EPSINC is very small, then the
number of substeps is large and the integration more precise but expensive. If. on the other
hand. EPSINC is given a larger value, the integration is cheaper but the error increases.

For the purpose of comparison. the same example as described in Fig. 6 was also
computed several times using the old formulation with different values of EPSINC. The
results obtained using the old formulation with EPSINC values of 0.0001. 0.00003 and
0.00001 are summarized in the first three columns of Table 1. together with the results
obtained using the new explicit formulation in the fourth column.

The first tour rows in Table | contain information about the CPU time spent in the
computations. and the last four about the accuracy obtained in the results. The CPU times
are given in terms of total values (row 1) and average CPU time spent each time the
constitutive subroutine is called (row 4), since the total number of times the subroutine is
called (row 3) 1s not the same for each run (it depends on the number of iterations necessary
for each load step to converge in the single-point main program, see Fig. 4). Also. the ratio
of the CPU time spent in the three calculations with the old version of the model to the
time spent by the explicit formulation is given (rows 2 and 5) in the table. The comparison
of accuracy is made in terms of the stress obtained at strains 0.0035 (approximately the peak
strain. row 6), and 0.007 (about twice the pcak strain, row 8). Assuming the values of stress
computed with the explicit formutation to be the exact solution, the integration errors for
the computations with the old incremental model have also been obtained (see rows 7 and 9).

From the results shown in the table it is apparent that the explicit formulation is much
faster than the old incremental formulation, and the computer time is reduced dramatically.
The exact value of the reduction factor depends on which of the three runs of the old model
is compared. but it can very well be greater than 10 tfor “reasonable™ integration crrors
under 1%, in the example studied. [t must also be pointed out that under some other types
of loading in which the amount of strain prescribed to the material is larger than in the
example analyzed (e.g. uniaxial loading after application of a high confining pressure), the
CPU time reduction could be even targer than evaluated. since the number of integration
substeps increases proportionally to the step size, while the CPU time for the explicit
formulation only depends on how many load steps are considered in the computation.

The second example presented in this section corresponds to a uniaxial compression
test carried out by Hognestad er al. (1955). The results are represented in Fig. 7. The
parameter values are £ = 3866 ksi, v=0.18, y,=0.5, «, = 0.00005, «,=0.0025,
ay = 0.0015 and &, = 0. The remaining parameters have their general values. In this
example, the uniaxial strain is first increased up to 0.0028 (somewhat beyond the peak),
then it is decreased to L0016 and again increased to the final value of 0.0040, all in load
steps 0.0002 in size.

The envelope curve in Fig. 7 agrees very well with the old curve and with experimental
data as well, and also a reasonable shape for a basic quasi-static loop is obtained at this
stage. It may be remarked that it is not a specific purpose of this work to model loops
accurately. Rather, the purpose here is merely to show that reasonable (or at least not
meaningless) results are obtained in the case of a load reversal.

Table 1. Comparison between the performances of the old und new formulations of the microplane model

Old incremental model Explicit
Step size 0.0001 0.00003 0.00001 mode!
Total CPU to & = 0.01 61.6s 156.2s 418.9s 11.t3s
Ratio to explicit 5.5 14.0 37.6 1
Calls to constitutive equations 222 206 197 193
CPU ume per call (s) 0.277 0.757 2.130 0.057
Ratio to explicit 4.9 13.3 373 |
aat e = 0.0035 (MPy) 39.00 39.77 40.05 40.10
Error to explicit (°») 274 0.32 0.12 0
aat s = 0.007 (MPa) 28.24 29.22 29.58 29.76

Error to explicit (*o) S.11 1.85 0.60 0
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In the last two examples, similar load historics consisting of two load steps are
considered. During the first load step. certain confining pressure is applied to the concrete,
and then a sccond load step consisting of a uniaxial strain increment under constant lateral
pressure is applicd. These examples correspond to two series of standard triaxial tests
carricd out by Balmer (1949) and Kotsovos and Newmann (1978). In both casces, several
tests under different confining pressures are modelled ; sce Figs 8-9. The values of the
parameters are: for Balmer, £ = 3500 ksi. v = 0.18, 5, = 0.85, ¢, = 0.00005, «, = 0.001,

75
b7
-4
S
-~ 50
B
)
7]
(]
=
-
n
_ 25
.E
» Triaxial Compression
< Salmer, 1943
=d,=0 Expiicit Wicropiane
3 ———01d Miceopiane Wodel
800 001 0.0z 0.05 0.04 0.05

Axial Strain £,

Fig. 8. Compurison with triaxial tests by Balmer (1949).

Explicit Microplane
—— ~0Id Micrapione Mode!

-~
o

v
o

Trigeial Compression
Koteaves ond Newmgn
1980

Axia! Stress o, (ksi)
~N
o

&

—40 0 4 80

0
Strain (x1079)

Fig. 9. Comparison with triaxial tests by Kotsovos ef al. (1978).



New explicit microplane model for concrete 1189

ai = 0.0025. k, = 3.28 ; and for Kotsovos and Newmann, E = 3400 ksi.v = 0.18, 5, = 0.85,
a, = 0.00005, a, = 0.002, af = 0.008 and k, = 0.61. All the remaining parameters have
their general values.

The objective of these two examples is to demonstrate that the new explicit formulation
can also reproduce satisfactorily the behavior of concrete under different confining
pressures. as can be seen in the figures. This is an important achievement, since it is in this
part of the mode! (influence of external confinement on microplane laws) in which the main
theoretical change has been made compared to the old microplane model.

5. SUMMARY AND CONCLUSIONS

While the aim of the original development of the microplane model had been the
accuracy in the modelling of test results, the main objective of the present new version of
the model is to achieve a new more rational and comprehensive theoretical description of
the model. as well as an easy implementation in a general code and numerical efficiency in
large-scale computations. To this end. the basic hypotheses have been revicwed. some
expressions have been rewritten in terms of total values rather than differential increments
of the variables, and a few important changes have been made in the functions and internal
dependences assumed. Also, physical interpretation has been provided for the variables and
equations whenever possible. On the numerical side. the model has been implemented in a
subroutine capable of performing explicit strain-to-stress calculations. This subroutine can
be used in either of two main programs, one for constitutive verification and the other for
IF.E. analysis. The examples of application show that the new explicit formulation gives a
very important reduction in computer time (one order of magnitude compared with the
same case analyzed using the previous version of the model). The explicitness of stress
calculation also chiminates the problem of error accumulation during the numerical inte-
gration. These practical advantages together with the good qualitative agreement of the
model with a wide range of experimental results in the full three-dimensional domain make
attractive the use of the model in the context of general FLE. codes and practical structural
compulations.
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APPENDIN A: APPLICATION OF THE PRINCIPLE OF VIRTUAL WORK

Enforcing the equality of virtual work between the macroscopic stress tensor o, and the corresponding
microplane stresses ay, o, and g, when a field of arbitrary virtual strain variations oz, are prescribed to the
maodel, one obtains the equation (Bazant, 1984)

4 . .
‘-n,,m:,, = ZJ [(ay +ap)oeg +a oy |Q (A
- 1

where the sign 6 denotes the virtual varitions, Given the kKinematic constraint between the macroscopic and
microplane strains, eqns (1) and (2) can be used for the virtual strivn virriations
Sy =m0, (A2)

dey = (0 - iy, (A3)

Introducing these equations tn eqn (A L), the following vartational equation s obtiaed
a0, = Y, 0, (A4)

where
. . 3 3 . c
Y, =a.0,+ il apnn, dQ+ o “nr,(x),,n, — ) dQ2. (AS)

Equation (Ad) is a vartational cquation which must hold for any variation or,, but with the restriction given by
symmetry (oc, cannot be ditferent to de,,). This restriction makes the direct climination of the term o, trom both
sides of the cquation (which would lead to o, = ¥,)) incorrect, since it would be equivalent to accept that
symmetric terms can have independent vanations. Instead, the implicit summation over ¢ and j on both sides of
the equation must be developed, and cach pair of the symmetric terms of o¢,, and 6,, considered as a single term
and their coetlicients grouped. Finally the following expression is obtained :

a,=4Y, +71) (A6)

from which, after substitution of ¥, from eyn (A3), the final egqn (3) for g,, is obtained.

Alternatively, with intuition (Bazantand Prat. 1988), one may symmetrize in advance the tensorial expression
multiplying or,, in eqn (A3) because the product of its nonsymmetric part with de,, vanishes. In that case, ¥, is
symmetric, eqn (Ad) implies that o, = ¥, and egn (5) results again.

APPENDIX B: INCREMENTAL RELATIONSHIP FOR THE PARALLEL MODEL

The basic equation of the parallel model, egn (10). can be written as:

oy = - (Bl
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By differentiation.

do; = Eds‘,-&eY'd(.t—'). (B2)
i i

The differentiation of ¢ ; leads to

where the increment of the shear stress modulus can be written as a product between the tangent stiffness in the
t—7 space (modulus to modulus relationship) and increment of sheur strain modulus :

dr = E¥ds, (B4)

The increment of the shear strain modulus d; must be related to the increment of its components dep as

(BS5)

(B6)

from which, making all the corresponding back-substitutions. the final eqn (17) is obtained.

APPENDIX (: DERIVATION OF THE MACROSCOPIC TANGENT STIFEFNESS

Introducing equs (14) (16) into egn (13) and then replacing the increments of microplane striins according
toegns (1) (4) in terms of the macroscopic strain increment de,, the following equation is reached

de, = 7, dey, (Cly

i
where

* tan

. EL vt : " . . . .

Lo = ; ‘)‘,.),.,+J Entnn (non, «AH)d(H-J 5 0, n 0, =200, )b -, ) A€ ()
. [7] i -

The coellicients Z, ,, have been derived correctly and, if used to compulte the increment of stress, they would give
the correet values. However, they cannot be identified directly with the compaonents of the tangent stittness tensor
since they do not satisfy the condition of interchangeability of indices &, 7 associated with the symmetry of the
strain tensor (although they do satisty the condition for indices 7, f associated with the symmetry of the stresses).
One way 1o identify the components of i symmetry-consistent stitfness matrix 2777, may be to replace the stress

increment in eyn (C1) by its expression involving D37 e,

Dpddey = 7, degy. (Cl)
Then the procedure to follow is to develop the summation for & and / on both sides, consider the symmetric
components K/ and /& of the strain tensor as a single variable, group their cocllicients, and then also consider
Do and D oas the same variable. The result is

l):ff, = “Z:/U+Zulk) ((.4)

ytan

which leads direetly to the final expression of D35, in eqn (19).



